Astronomy Methods

Astronomy Methods is an introduction to the basic practical tools, methods and phenomena that underlie quantitative astronomy. Taking a technical approach, the author covers a rich diversity of topics across all branches of astronomy, from radio to gamma-ray wavelengths. Topics include the quantitative aspects of the electromagnetic spectrum, atmospheric and interstellar absorption, telescopes in all wavebands, interferometry, adaptive optics, the transport of radiation through matter to form spectral lines, and neutrino and gravitational-wave astronomy. Clear, systematic presentations of the topics are accompanied by diagrams and problem sets. Written for undergraduates and graduate students, this book contains a wealth of information that is required for the practice and study of quantitative and analytical astronomy and astrophysics.

Hale Bradt is Professor Emeritus of Physics at the Massachusetts Institute of Technology. Over his forty years on the faculty, he carried out research in cosmic ray physics and x-ray astronomy, and taught courses in Physics and Astrophysics. Bradt founded the MIT sounding rocket program in x-ray astronomy, and was a senior or principal investigator on three NASA missions for x-ray astronomy. He was awarded the NASA Exceptional Science Medal for his contributions to HEAO-1 (High Energy Astronomical Observatory 1), the 1990 Buechner Teaching Prize of the MIT Physics Department, and shared the 1999 Bruno Rossi prize of the American Astronomical Society for his contributions to the RXTE (Rossi X-ray Timing Explorer) program.

Solutions manual available for instructors by emailing [email protected]

Views of the entire sky at six wavelengths in galactic coordinates. The equator of the Milky Way system is the central horizontal axis and the galactic center direction is at the center. Except for the x-ray sky, the colors represent intensity with the greatest intensities lying along the equator. In all cases, the radiation shows an association with the galactic equator and/or the general direction of the galactic center. In some, extragalactic sources distributed more uniformly are evident. The captions below are listed in frequency order (low to high). The maps are also in frequency order as follows: top to bottom on the back cover followed on the front cover by top inset, background map, lower inset.

Radio sky at 408 Hz exhibiting a diffuse glow of synchrotron radiation from the entire sky. High energy electrons spiraling in the magnetic fields of the Galaxy emit this radiation. Note the North Polar Spur projecting above the equator to left of center. [From three observatories: Jodrell Bank, MPIfR, and Parkes. Glyn Haslam et al., MPIfR, SkyView]

Radio emission at 1420 MHz, the spin-flip (hyperfine) transition in the ground state of hydrogen, which shows the locations of clouds of neutral hydrogen gas. The gas is heavily concentrated in the galactic plane and shows pronounced filamentary structure off the plane. [J. Dickey (UMn), F. Lockman (NRAO), SkyView; ARAA 28, 235 (1990)]

Far-infrared (60-240 |im) sky from the COBE satellite showing primarily emission from small grains of graphite and silicates ("dust") in the interstellar medium of the Galaxy. The faint large S-shaped curve (on its side) is emission from dust and rocks in the solar system. Reflection of solar light from this material gives rise to the zodiacal light at optical wavelengths. [E. L. Wright (UCLA), COBE, DIRBE, NASA]

Optical sky from a mosaic of 51 wide angle photographs showing mostly stars in the (Milky Way) Galaxy with significant extinction by dust along the galactic plane. Galaxies are visible at higher galactic latitudes, the most prominent being the two nearby Magellanic Clouds (lower right). [(©Axel Mellinger]

X-ray sky at 1-20 keV from the A1 experiment on the HEAO-1 satellite showing 842 discrete sources. The circle size represents intensity of the source and the color represents the type of object. The most intense sources shown (green, larger, circles) represent accreting binary systems containing a compact star, either a white dwarf, neutron star, or a black hole. Other objects are supernova remnants (blue), clusters of galaxies (pink), active galactic nuclei (orange), and stellar coronae (white) [Kent Wood, NRL; see ApJ Suppl. 56, 507 (1984)]

Gamma-ray sky above 100 MeV from the EGRET experiment on the Compton Gamma Ray Observatory. The diffuse glow from the galactic equator is due to the collisions of cosmic ray protons with the atoms of gas clouds; the nuclear reactions produce the detected gamma rays. Discrete sources include pulsars and jets from distant active galaxies ("blazars"). [The EGRET team, NASA, CGRO]

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment