Info

Figure 12.8. (a) Binary system of two neutron stars in a close circular orbit. Observer #1 is in the orbital plane (inclination i = 90°) and detects a gravitational wave with linear polarization. An observer normal to the plane (i = 0°) would detect circular polarization. Observer #2 is at arbitrary inclination i. (b) Calculation of the waveform of the strain h vs. time in the orbital plane in the last fractional second before the two stars merge into a black hole, for circular orbits. The rapid increase of frequency and amplitude is a "chirp" of gravitational radiation. The frequencies are in the audio range, ending at about 1 kHz. [(b) From K. Thorne, in Proc. 1994 Snowmass Summer Study, eds. E. Kolb and R. Peccei, World Scientific, 1995; gr-qc/9506086]

Observer #1

Figure 12.8. (a) Binary system of two neutron stars in a close circular orbit. Observer #1 is in the orbital plane (inclination i = 90°) and detects a gravitational wave with linear polarization. An observer normal to the plane (i = 0°) would detect circular polarization. Observer #2 is at arbitrary inclination i. (b) Calculation of the waveform of the strain h vs. time in the orbital plane in the last fractional second before the two stars merge into a black hole, for circular orbits. The rapid increase of frequency and amplitude is a "chirp" of gravitational radiation. The frequencies are in the audio range, ending at about 1 kHz. [(b) From K. Thorne, in Proc. 1994 Snowmass Summer Study, eds. E. Kolb and R. Peccei, World Scientific, 1995; gr-qc/9506086]

orb h r

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook


Post a comment