Migration is the transfer of mobile (liquid) chemical species from the solid propellant to the liner, insulator, or inhibitor, or vice versa. Liquid plasticizers such as NG or DEGN or unreacted monomers or liquid catalysts are known to migrate. This migratory transfer occurs very slowly; it can cause dramatic changes in physical properties (e.g., the propellant next to the liner becomes brittle or weak) and there are several instances where nitroglycerine migrated into an insulator and made it flammable. Migration can be prevented or inhibited by using (1) propellants without plasticizers, (2) insulators or binders with plasticizers identical to those used in propellants, (3) a thin layer of an impervious material or a migration barrier (such as PU or a thin metal film), and (4) an insulator material that will not allow migration (e.g., PU) (see Ref. 12-22).

The graphite-epoxy motors used to boost the Delta launch vehicle use a three-layer liner. EPDM (ethylenepropylene diene terpolymer) as a thin primer to enhance bond strength, a polyurethane barrier to prevent migration of the plasticizer into the EPDM liner, and a plasticized HTPB-rich liner to prevent burning next to the case-bond interface. The composite AP-A1 propellant also uses the same HTPB binder.

Liners, insulators, or inhibitors can be applied to the grain in several ways: by painting, coating, dipping, spraying, or by gluing a sheet or strip to the case or the grain. Often an automated, robotic machine is used to achieve uniform thickness and high quality. Reference 12-21 describes the manufacture of particular insulators.

An external insulation is often applied to the outside of the motor case, particularly in tactical missiles or high-acceleration launch boosters. This insulation reduces the heat flow from the air boundary layer outside the vehicle surface (which is aerodynamically heated) to the case and then to the propellant. It thus prevents fiber-reinforced plastic cases from becoming weak or the propellant from becoming soft or, in extreme situations, from being ignited. This insulator must withstand the oxidation caused by aerodynamically heated air, have good adhesion, have structural integrity to loads imposed by the flight or launch, and must have a reasonable cure temperature. Materials ordinarily used as internal insulators are unsatisfactory, because they burn in the atmosphere and generate heat. The best is a nonpyrolyzing, low-thermal-conductivity refractory material (Ref. 12-23) such as high-temperature paint. The internal and external insulation also helps to reduce the grain temperature fluctuations and thus the thermal stresses imposed by thermal cycling, such as day-night variations or high- and low-altitude temperature variations for airborne missiles.

Was this article helpful?

0 0
Project Management Made Easy

Project Management Made Easy

What you need to know about… Project Management Made Easy! Project management consists of more than just a large building project and can encompass small projects as well. No matter what the size of your project, you need to have some sort of project management. How you manage your project has everything to do with its outcome.

Get My Free Ebook

Post a comment