Giza Abu Roash and Zawiet el Arian

The greatest and most sophisticated monuments that man has ever dared to build are the pyramids of Giza. To avoid needless complication, in this chapter I shall follow the commonly accepted chronology and pretend that the traditional pairings of these pyramids with their pharaohs, and the chronological sequence of the buildings, are all accurate. But I shall return to this subject in Chapters 18 and 19.

According to the conventional chronology, then, Khufu, son and successor to Sneferu, moved the location of his own pyramid from Dashour to Giza, for unknown reasons. At Giza he built the largest stone pyramid as well as one of the largest buildings ever constructed on earth, in terms of material displaced. It is outstripped only by the Pyramid of Cholula (Chapter 7), but that is made of mud bricks, not stone; no modern building even comes close to either of these two in terms of the sheer quantity of material involved (Plate 29).

The successor to Khufu, Djedefre, commissioned his own pyramid, never completed, at Abu Roash, a hill northwest of Giza. Then Khafre and Menkaure returned to Giza. Another unfinished pyramid stands south of Giza at Zawiet el Arian (different from the Layer Pyramid already discussed). Its owner is unknown, but judging by its style, size, and building techniques, it is certainly of the same period.

When the pyramid of Khufu, or Great Pyramid, comes up in conversation, some bright spark never fails to remind us that it is the only surviving exemplar of the "seven wonders of the world." It is unclear why this rather banal idea of the seven wonders has had so much hype (its source is not clear, since it is supposed to have originated with a certain Callimachus of Cyrene, third century BC, but his work, "Collection of Wonders," has not come down to us, and the list first seems to have been drawn up by Antipater of Sidon about a century later). But the Great Pyramid is, in all respects, a real wonder:

1. Its base sides measure on average 230.35 meters with maximum deviation between the measures of different sides of less than 20 centimeters.

2. It has a slope of 51°51', from which it can be deduced that the original height (the top is missing today) was 146.6 meters. The pyramid was thus as tall as a 40-story skyscraper.

3. The orientation of the sides to the cardinal points is with a precision on the order of 3 arc minutes, that is, a 20th of a degree.

4. Its core consists of 210 courses of limestone blocks piled on top of each other, making a total of no less than 2,200,000 blocks (a small rocky outcrop was incorporated into the first layers of blocks, making it difficult to determine exactly the volume of stones employed).

As a matter of fact, the Khufu pyramid, like its quasi-sister Khafre, is an artificial mountain. It is as if someone had wanted to extract a mountain from the rock of the Giza plateau, to then reconstruct it above ground.

The casing, which helped to make it geometrical and hence smooth, consisted of scores of thousands of huge limestone slabs (from the quarries at Tura, on the opposite bank of the Nile). Almost all of these casing blocks were removed in the Middle Ages and used in the building of the Cairo Citadel. One can have a vague idea, however, of what a colossal feat the casing of the pyramid must have been by looking at the enormous block that has miraculously remained in position at the base of the pyramid on the north side.

Unlike all the other pyramids (which, as we have said, lack an internal structure above ground), the Great Pyramid is a "building," in that it has corridors and rooms. These were created during the construction, just at the moment when the work had progressed to the appropriate layer of blocks; once the new tier had been laid, it was impossible to go back and create further internal spaces, so they had to be planned meticulously before reaching the height at which they were envisaged.

Figure 16.8: Section of the Great Pyramid. 1) Original entrance 2) Mamun's hole 3) Descending corridor 4) Subterranean Chamber 5) well shaft 6) Queen's Chamber 7) Great Gallery 8) Lower shafts 9) King's chamber 10) "Relieving Chambers'' 11) Upper shafts

Great Pyramid Robot Shafts

Figure 16.8: Section of the Great Pyramid. 1) Original entrance 2) Mamun's hole 3) Descending corridor 4) Subterranean Chamber 5) well shaft 6) Queen's Chamber 7) Great Gallery 8) Lower shafts 9) King's chamber 10) "Relieving Chambers'' 11) Upper shafts

Entering the Great Pyramid from the original entrance on the north face, we come into the descending passageway (today access is by a slightly lower passage, possibly hewn out by looters in the Middle Ages and known as "Mamun's Hole''; see below), which leads to a chamber carved out of the bedrock, called the Subterranean Chamber. Egyptologists consider this chamber to be incomplete. In fact, it was never dug out completely; the last part was only excavated to half its presumable height, with a central passageway.

Halfway down the descending passageway, an ascending passageway veers off, but it is blocked off since the time of construction by a "plug" made of huge blocks of granite. "Mamun's hole'' was actually a way of getting around the plugs (it is not known how they managed to work out the right direction and height) and so today one goes through the "hole" and comes out the side of the plug blocks. It is thus possible to see in cross-section the unique arrangement of the passages, with the downward passage penetrating the living rock and the upward passage disappearing from view up above. The passage rises with a gradient of 26 degrees for 39 meters inside the pyramid, before continuing horizontally for another 36 meters and emerging in a second chamber, which is also, like the subterranean chamber, on the vertical axis of the building and measures 5.74 by 5.2 by 6.2 meters. It is convenient to use the traditional terminology, and so I shall call this room the queen's chamber, but it is universally accepted that the room had nothing to do with any queen. The chamber has a projecting corbeled niche (with blocks sticking out a bit one on top of the other) on the east wall; otherwise it is totally anonymous. Two little openings, each the size of a handkerchief, are visible on the north and south walls respectively, though. These openings give access to narrow, square-sectioned shafts, which, after a brief horizontal stretch, veer upward diagonally. One has a strange sensation looking inside these shafts, as if they were pneumatic dispatch tubes, not designed for transit (only a hamster would venture in), but for some kind of communication. The shafts were originally closed off by the builders, and were discovered in 1872 by the English engineer Wyman Dixon. As we shall see in more detail later, until the beginning of the 1990s they were considered unfinished, and it was believed that the builders had interrupted their work almost immediately. It was indeed thought (and is still thought by some Egyptologists) that the designer had the queen's chamber built after changing his original plan, which envisaged only the subterranean chamber, but then had second thoughts, leaving the queen's chamber unfinished too, and moving on to construct one of the most outstanding masterpieces in architectural history—the grand gallery.

This high-ceilinged gallery starts from the point where the horizontal shaft branches off from the ascending passage. It is 46.6 meters long and has the same gradient as the ascending corridor, but, in contrast, is 2 meters wide and reaches a height of 8.54 meters, using a technique we have encountered before—overlapping vaults, one jutting out over the other (the gallery has to sustain the massive weight of stone above, right up to the cap of the pyramid). The spell that the grand gallery casts over the visitor is enhanced by the fact that one emerges into it abruptly from the cramped passageway (a low platform with regularly spaced recesses runs along the sides of the gallery; otherwise the space is utterly bare and anonymous).

The gallery ends with a step (usually called the great step), leading into another narrow horizontal passageway. This passes through a small antechamber, which contained a complicated locking system of granite portcullises. Eventually the antechamber takes us to a room that is traditionally called the king's chamber. This chamber would appear to be, at last, the actual burial chamber. The room, 10.47 meters long, is a granite-encased parallelepiped, whose base is made up of two squares and whose height is nearly equal to half of the base diagonal. The internal walls were made of perfectly smoothed blocks of granite from Aswan, about 800 kilometers away.

This room engenders a sense of unreality with its total anonymity. There

Blocks Inside Kings Chamber
Figure 16.9: Entrance to the King's chamber viewed from inside. On the left, is visible the "mouth" of the northern channel.

is only a rectangular, open "tank" of pink granite, probably Khufu's sarcophagus, thought it would barely hold the dimensions of the wooden coffin of an adult man; in spite of this, it is too big to have been transported in the corridors, and therefore it was put in place before the completion of the room's ceiling. The coffin was carved with the same techniques used to pierce holes in the granite slabs of the Valley Temple of the second pyramid (see below), that is, with a core drill. The work is almost perfect, but we can see the traces of a slightly blurred perforation on one of the edges.

Besides the sarcophagus, the king's room is desolately undecorated and silent. There are, however, two curious small openings, like those in the queen's chamber, on the north and south walls. Again they lead to shafts that, unlike those in the queen's chamber, exit the pyramid through the north and south faces, respectively (this has been known since the 19th century, when Vyse, as was his wont, employed gunpowder to seek the exits). These exits are both at the same height, almost 80 meters, and since this is much higher than the king's chamber, the shafts twist sharply upward. Moreover, given that the king's chamber was not located on the central axis, but was slightly displaced to the south, the inclinations of the two channels are different, around 44.5° for the south shaft, 31° for the northern shaft at exits; we shall see later that actually it was the displacement of the chamber from the central axis that was chosen on the basis of the gradients of the shafts. The entire project was thus governed by the inclinations of two small, apparently irrelevant little shafts.

There can be no doubt that the construction of these two seemingly straightforward structural elements was in fact an extremely sophisticated and complex piece of work. If it is difficult to build internal rooms inside a 150-meter-tall structure weighing millions of tons, constantly struggling to avoid collapses, think how much more difficult it must be to work diagonally, as in this case there is not just the vertical weight to worry about but also the possible sliding of one part onto another along the diagonal (to avoid sliding, it was necessary to dovetail the diagonally laid blocks together with the utmost care). One would have to be strongly motivated, then, to create these shafts. Most Egyptologists have thought that the motivation was to allow air into the chamber, thus providing ventilation for the workers, during the construction of the room.

Above the king's chamber is a series of spaces usually called relieving chambers, because their purpose is held to be that of distributing the weight of the rest of the pyramid towering above and avoiding the collapse of the roof (as we shall see, this interpretation is wrong). These chambers were sealed off after construction and made with five layers of giant granite slabs, weighing over 40 tons, smoothed only on one face and alternated with empty spaces; above the last series of slabs the builders hewed out an inverted V

vault. The lowest chamber, located directly on the ceiling of the room, was reaccessed by the builders to control the status of the masonry through a tunnel from the summit of the great gallery; this tunnel was rediscovered and explored by Davidson in 1765, while the upper rooms were discovered by Vyse, who, in 1837, made a number of holes (with gunpowder) in successive slabs until he reached the vault. In the chambers discovered by Vyse, there appear hieroglyphs, traced in red with a paintbrush, bearing the name of Khufu.

The internal structure of the Great Pyramid comprises also a well shaft connecting the grand gallery with the descending passage. This well is the only structural element whose section above the surface was executed retrospectively, that is, carving it out of the blocks already laid. It also holds the key, according to Egyptologists, to the explanation of how the pyramid was closed. Access to the ascending corridor is obstructed by granite blocks acting as a stopper, whose thickness is slightly less than that of the corridor and thus seal it hermetically. It is suggested, therefore, that, after the royal mummy had been entombed, the plug stones, kept in the grand gallery, were slid down until they blocked off the corridor. The idea, then, is that the grand gallery was made so large that it could thus accommodate the blocks, and that the work crew could exit after their sliding down through the well shaft.

For reasons that nobody has ever succeeded to explain, not far from the pyramid underground tunnels were dug out, bearing an amazing resemblance, in terms of size and design, to those inside the Great Pyramid, and in particular to the stretch joining the upward and downward passages. Many have suggested that what we have here is a one-to-one scale model of these passages carved into the bedrock, and in fact today they are called trial passages. However, such an interpretation makes little sense; why build a

Djedefre Layout
Figure 16.10: Section and plan of the "Trial Passages" according to Petrie
Figure 16.11: Plan of the complex of Djedefre at Abu Roash

one-to-one scale model? A possible interpretation is rather that these were underground passages intended for an auxiliary pyramid that was never built above them (Lehner 1985b).

The complex of annexes to the Khufu pyramid included the mortuary temple on the east side of the pyramid (today only beautiful paving stones made of large blocks of basalt are left), connected by a causeway, hundreds of meters long, to the Valley Temple, today located in the area of Nazet el Saman village. This building has therefore been lost, although we do have some information about it (see Chapter 19).

Djedefre apparently succeeded his father Khufu to the throne. On a hill at Abu Roash, about 7 kilometers north of Giza, there stands an unfinished pyramid that is alleged to be that of this pharaoh. Indeed, although the pyramid itself is anonymous, various fragments of statues of Djedefre were found in a ditch nearby (Mathieu 2001). The Abu Roash pyramid was designed to be 106 meters wide, with a slope of about 52 degrees, but it was only completed to a height of about 15 meters above ground (some are of the opinion that the pyramid was "dismantled" over the centuries, but I am very skeptical about such a theory). The excavation of the underground part, however, was completed, and laborers had begun to lay huge casing blocks along the walls of the ramp, hewn out of the bedrock, which, duly cased, would have become the descending passageway. The pyramid thus provides

Abu Roash Pyramid
Figure 16.12: Section of Khafre Pyramid

a unique opportunity to visit a fourth dynasty pyramid building site frozen at an intermediate stage of work. Archaeologists have found a copper ax inside the ramp, which they interpret as a foundation deposit, that is to say, a place where artifacts (usually called "offerings") were laid at the moment of the foundation of a building (similar to laying the foundation stone today with dignitaries in attendance). This ritual, quite common in many civilizations, aims to invoke good auspices for the success of the building as well as the gods' good will.

According to the accepted chronology, when Djedefre died, his brother Khafre, on succeeding to the throne, decided to return to Giza to build his own pyramid. The pyramid attributed to Khafre lies not far from the Great Pyramid, and his diagonal is laid nearly on the same line. The colossal monument seems even bigger than that of Khufu, since it was built on a slightly more elevated area of the plateau and is slightly steeper, but in fact it is a little smaller—143 meters tall, with a base side of 215 meters. The first courses were cased in heavy blocks of granite from Aswan. The casing then proceeded with fine limestone; part of it is still in place, in the final courses of the building, over 120 meters high. The internal structure (as far as we know) is relatively simple and consists of an underground chamber accessed by a passage, provided with a service room and created after the abandonment of another shorter passage, maybe indicating an enlargement not included in the original layout.

Abu Roash Pyramid
Figure 16.13: The Khafre pyramid with the Great Pyramid in the background.
Abu Roash Pyramid
Figure 16.14: The magnificent granite hall of the second pyramid Valley Temple

The temple complex of the second pyramid is well preserved. There is still (commonly overlooked by tourists) the complete framework of the funerary temple, on the east side of the pyramid, built with giant limestone blocks weighing up to 200 tons. A monumental causeway starts from this temple, and proceeds downhill until it arrives in the middle between two other megalithic temples. Coming from the direction of the pyramid, to the left, just before the temples, a large trench gapes opens. In the center, carved out of a preexisting natural rock, sits the statue called the Sphinx.

The Sphinx has the body of a giant crouching animal (almost certainly a lion, though some details may be more reminiscent of a dog) and a human face. It is 57 meters long and 20 meters tall, and the width of its face spans 4 meters. The statue faces the rising sun—true east. The same is true for the Temple of the Sphinx, the enormous building downhill of the statue, which is undoubtedly of the same period, given that its huge megalithic blocks were extracted from the trench. The other temple is referred to as Khafre's real Valley Temple. This is an amazing building, consisting of an extensive colonnaded T-shaped space and a few small annexed rooms. The walls are made of colossal limestone blocks weighing up to 250 tons and stacked one on top of the other. These walls are so thick that, if it were not for various

Abu Roash Formation
Figure 16.15: The so-called Wall of the Crows, the original entrance to the Giza Necropolis

casing granite slabs still in place, the monument might be taken for a natural rock formation from a distance. Huge limestone blocks can also be seen on what was probably the original entrance to the necropolis of Giza. Known as the Wall of the Crows, it is an imposing megalithic wall, situated to the south of the Sphinx, near the modern parking lot for tourists' buses. It has only one entrance, whose lintel (weighing 250 tons or more) is undoubtedly one of the biggest blocks of stone ever moved in Egypt.

The Valley Temple was cased with large monolithic slabs of granite from Aswan. The columns (actually huge parallelepiped-shaped monoliths), which spread across the main area, are also of granite. The Egyptians' great skill in working with granite is evident not only in the joints between the ashlars, as perfect as those of the Incas or in the acropolis at Alatri, but also in the circular holes they made with tube drills. These holes can be easily spotted in the lintels giving access to various rooms, and they were thus used to put the door posts in place. Since the only metal at their disposal for making tools (apart from a small quantity of meteoritic iron, only used for small ritual objects) was copper, we have to assume that these drills were made using copper tools. Given, however, that it is absolutely impossible to drill through granite by turning a copper pipe above it (the granite will quietly eat up the copper, if anything), the only possibility is that highly abrasive quartz sand was continuously poured between the copper and the granite, greatly increasing the frictional force, while at the same time very high pressure was put on the rotating tube (nobody has yet succeeded in reproducing the experiment). The British Egyptologist Flinders Petrie (1883) was dumbfounded when he found in Giza the "carrots," extracted by the Egyptians during the perforation of the granite. These carrots, with their impeccable spiral markings testifying to the speed with which operations must have been carried out, can be seen today in the Petrie Museum in London.

Khafre's successor was apparently Menkaure, builder of the third pyramid of Giza (Plate 30). This pyramid, though it is small compared to the two giants, it is still perfectly respectable, as tall as a 66-meter-high building, 105 meters wide at the base, and with a gradient of 51°20'. Possibly to make up for its reduced size, the designer conceived the idea of casing many courses, if not the whole pyramid, with heavy slabs of granite. Some of the courses are still in place, and it is difficult to determine how much of the casing has been removed and thus whether the covering had been completed (extremely unlikely) or not. Final polishing of the slabs that had been fitted was never completed, and at various points we find some roughly hewn slabs put in place, bringing protuberances identical to the ones often left by the Incas on their large andesite blocks. The casing of the enormous temple of

Abu Roash Pyramid

The Age of the Pyramids

A , ¿iltuhiitsicr. B . J$asa.U D. T)iorcbe G. Grvt*uie. L .Limestone

Figure 16.16: Examples of stone cutting from the second pyramid Valley Temple, from Petrie.

Abu Roash Pyramid

the third pyramid—another infrequently visited place in Giza, but worth the detour—was also to be of granite, but was never completed.

The intentions of the architect of Menkaure's pyramid are unclear. Even more astonishing than the external granite casing is the arrangement of the rooms in the substructure of the pyramid. The substructure, carved out ofthe rock, is extremely complicated and envisages a set of several rooms. The last of these (the sepulchral chamber) was roofed with an inverted V-vault, made of massive slabs. Yet the weight of the pyramid does not rest on the vault, which is visible from above through an opening. Thus, its creation is very surprising, since it does not seem to have any practical purpose and it must have been a tremendous task to build.

The commencement of another pyramid on the Zawiet el Arian site has to be inserted somewhere in the timeline of the four pyramids (the three at Giza and the one at Abu Roash). It is widely held that its owner was one of Djedefre's sons, Baka, who must have ruled for some years. This conjecture is based, however, on a much later inscription, from the Middle Kingdom, found at Wadi Hammamat. All that is left of the Zawiet pyramid is the part excavated open cast from the rock, which was intended to form the substructure, of such prodigious size that it has come to be known as the Great Pit. Sources report that the site, which cannot be visited today as it is located inside a military base, contains an oval pink granite sarcophagus, and that the pyramid was originally planned to be considerably bigger than that of Djedefre, with a base side of 200 meters (Fakhri 1974).

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment