New Infrared and Ultraviolet Observations

Telescopes need to be specially equipped to detect infrared radiation—the portion of the spectrum just below the red end of visible light. Infrared observatories have applications in almost all areas of astronomy, from the study of star formation, cool stars, and the center of the Milky Way, to active galaxies, and the large-scale structure of the universe. IRAS (the Infrared Astronomy Satellite) was launched in 1983 and sent images back to Earth for many years. Like all infrared detectors, though, the ones on IRAS had to be cooled to low temperatures so that their own heat did not overwhelm the weak signals that they were trying to detect. Although the satellite is still in orbit, it has long since run out of coolant, and can no longer make images. The infrared capability of the Hubble Space Telescope provided by NICMOS (Near-Infrared Camera and Multi-Object Spectograph) yielded spectacular results while in operation. The Next-Generation Space Telescope (NGST) will be optimized to operate at infrared wavelengths, and will be cooled passively (by a large solar shield).

Ultraviolet radiation, which begins in the spectrum at frequencies higher than those of visible light, is also being studied with new telescopes. Since our atmosphere blocks all but a small amount of ultraviolet radiation, ultraviolet studies must be made by high-altitude balloons, rockets, or orbital satellites. The Hubble Space Telescope, for instance, has the capability to detect ultraviolet (UV) photons as well as those with frequencies in the visible and infrared. Ultraviolet observations provide our best views of stars, and stars with surface temperatures higher than the sun's.

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment