Say You Want A Revolution

True story: During the First Astrobiology Science Conference at NASA's Ames Research Center in April 2000, President Clinton was, by coincidence, landing at the adjacent Moffett Field Air Base, where Air Force One parks when the president comes to the San Francisco area. In a scene right out of The X-Files, one of his Secret Service men, who had stopped a suspicious-looking scientist, was heard to shout anxiously into his walkie-talkie, "What the HELL is astrobiology!?"

It's a good question. Popular books and magazines announce it as a new scientific revolution. In the introductory chapter of Rare Earth, entitled "The Astrobiology Revolution and the Rare Earth Hypothesis," we read, "A whole new science is emerging: astrobiology, whose central focus is the condition of life in the Universe. . . . We are witnesses to a scientific revolution. ... It is very much like the early 1950s, when DNA was discovered, or the 1960s, when the concept of plate tectonics and continental drift was defined."

But where is the revolution, and will it be televised? What is the new world-melting idea? We think of Copernicus banishing Earth to the margins of space, Darwin linking all past and present life together,

Einstein warping light and time, Bohr dissolving solid matter at its smallest into shadowy waves of quantum probability. These ideas destroyed our notions of space, time, matter, and life. They left us permanently changed. What about the "astrobiology revolution"? What's the big idea? That other planets may be inhabited? That is certainly a pretty rad thought, but we've been kicking it around for at least twenty generations.

Well, then, is all this "revolution" talk based on the premise that we are perched on the edge of a devastating new discovery that will rock our universe? Thirty years ago, Carl Sagan wrote in The Cosmic Connection that the study of extraterrestrial life had "finally come of age." The preface to David Darling's 2000 book, Life Everywhere: The Maverick Science of Astrobiology, stated, "Poised on the brink of a momentous breakthrough that will change forever how humankind thinks about itself and the universe around it, astrobiology is quickly coming of age." Which causes me to wonder: Just how long can we stay poised on a brink? We don't know if we're any closer to finding life now than when Viking was on its way to Mars in the 1970s. When we do make the big discovery, bag an ET, which could be tomorrow afternoon in time for the evening news, or two centuries from now*— that will be the start of the real revolution.

If astrobiology is not a revolution, then what is it? Perhaps a new discipline, a novel field of research. Try telling that to anyone who was already pursuing exobiology before the new hubbub began in the late 1990s. Some recent descriptions of astrobiology tend to ignore exobiology's checkered history and present it as a virgin birth, sprung immaculately into the world. In truth it is more of a resurrection. Is that all it is? Have we just dusted off exobiology, given it a new name, and sent out press releases?

No, it's more than that. Astrobiology may not be, as advertised, a scientific revolution, but it is an important new movement—marking a shift in attitude about ET life. Exobiology had always survived on the

*In general I say the sooner the better, but I'm not sure how I'd feel about a major discovery between now and the publication date of this book. . . . When Kubrick was working on 2001: A Space Odyssey, he actually tried to buy an insurance policy against the possibility that extraterrestrial intelligence would be discovered before the film opened, rendering his work obsolete.

fringes of planetary society. It was fed scraps but made to sleep outside. Reborn as astrobiology, it has rather suddenly been invited inside the main house and embraced as the mascot of our space science enterprise, receiving official encouragement and generous funding in the bargain.

In 1998 the NASA Astrobiology Institute (NAI) was started with an initial annual budget of $5 million. By 2002 this had increased to $15 million (this does not include the much higher cost of spacecraft missions). As NASA has funneled money into astrobiology, planetary scientists are discovering a latent interest in the astrobiological implications of their research. Biologists, chemists, and earth scientists are joining in the feast. Nothing like a new watering hole to get all the jungle animals to pay attention, come together, and talk about life. For some, it was a chance to finally receive funding—and community approval—for research they had always wanted to do. For others it was a chance to branch out into an area they had never considered working in. Since the late 1990s, planetologists, biologists, and others have converged several times a year at large astrobiology conferences, and two new journals have started up, Astrobiology and the International Journal of Astrobiology. Now astrobiology is going worldwide. Centers affiliated with NASA's institute have sprung up in Spain, France, Australia, the UK, and Japan. In May of 2001 the First European Workshop on Exo/Astrobiology (a title that hedges its bets) was held in Frascati, Italy.

Increasingly as well, astrobiology has become the public face of NASA, in press releases, schools, TV documentaries, and museum exhibits—astrobiology is the new hook. Across a wide spectrum of activities, aliens are in at NASA, like never before.

But, why now? The mid-1990s saw a convergence of several surprise breakthroughs. Each, by itself, would have generated sparks, but combined, they ignited a conflagration. These were, in order of importance, (1) the discovery of possible fossils in the Martian meteorite ALH84001, (2) the discovery of the first planets outside our solar system, and (3) Galileo's images confirming the likely presence of an ocean on Europa. When all these occurred within a two-year period, the excitement was cumulative. Something happened.

What happened was that Dan Goldin, NASA's administrator at the time, took heed of the lavish press coverage and the enthusiastic public reaction to these discoveries. Halfway through his nine-year tenure at

NASA (1992 to 2001), Goldin seemed to become convinced that exobiology, rechristened as astrobiology,* should largely define NASA's mission and its public image. We were given a green light to write press releases and funding proposals highlighting the question of alien life.

This fanned a positive feedback loop between media, science, and government, all egging each other on. An astrobiology spin helped get their science in the papers. The new wave of public visibility pleased NASA administrators and made it easier for them to sell their programs to Congress. This translated into increased funding. Suddenly, astrobi-ology was not only hip but profitable. A renewed research focus, more headlines, and more funding all followed.

It helped that, by the nineties, the second generation of planetologists was becoming well established in the field.f The insecurities about being taken seriously by other sciences, and the reluctance to be associated with the search for alien life, were fading away. Also, since the time of Viking, planetary science (and science in general) had become much more media savvy. Scientists realized, especially after the Cold War fizzled, that they could not take public support for granted. No American planetary missions were launched for a decade between Pioneer Venus in 1978 and Magellan in 1989. Through the crucible of near extinction, planetary scientists became better adapted to the media age. In the nineties it became de rigueur to issue a press release anytime a paper was published that might possibly be seen as newsworthy.

When "the Mars rock" was greeted with global headlines in 1996, it suddenly seemed that the only angle that mattered was the life angle. Stories about all areas of planetary science were being reported with an alien-life spin. Any result that could be cast in terms of the search for life had an excellent chance of making the news.

Meanwhile, out at Jupiter, Galileo had recently entered orbit and had its first close encounters with Europa. The spacecraft, sharp-eyed but autistic, was slowly sending down a stream of new images that increased the circumstantial evidence for an underground ocean slosh

*Wes Huntress, the former NASA associate administrator for Space Sciences, apparently suggested this title for NASA's renewed commitment to what had formerly been called exobiology.

+It cracks me up to see my grad school contemporaries leading planetary missions, chairing important committees, and pontificating at meetings. They act like real scientists, but I am not fooled.

ing beneath Europa's cracked icy face. Galileo scientists were encouraged to talk about what this could mean for life there, in a way that would have been frowned upon seventeen years earlier during the Voyager encounters. Times had changed and attitudes had shifted.

Planetary encounters in the late 1990s were much more strategically packaged for the public than they had been in the 1970s. The rocks at the Mars Pathfinder landing site, where the little Sojourner rover romped in July 1997, were given cute, media-friendly cartoon names like Scooby-Doo and Yogi. The rocks at the Viking lander sites had mostly just been assigned numbers.* The new rocks weren't any cuter than the old ones, but a later generation of scientists, raised on cartoons, video games, MTV, and computers, was more tuned in to the rhythm and the value of catchy sound bites.

At times we have gone overboard, conspiring with the media to exaggerate or distort the significance of our results. It gives them easy headlines and us an ego boost, visibility, and easier access to funding. For a while, it seemed that nearly every discovery of the Galileo mission, from magnetic fields to intriguing surface patterns on the moons, was somehow spun for the press with an extraterrestrial-life angle. I realized that this had gone too far a couple of years ago when I received an e-mail from my eleventh-grade English teacher, Martie Fiske.f An avid follower of science news, she was annoyed by the twentieth story she had read that year with the headline " Galileo Discovers New Clues to Possible Life in Europa!" Martie asked me, "Why do you people keep feeding us the same story over and over again?"

Though it can be taken to questionable extremes, all in all it's a welcome change that scientists have become more aware of how their work relates to the concerns of John Q. Public. Newsworthy angles are now sought for results that might otherwise seem obscure. Sometimes the right spin can reveal a human-interest angle lurking in the most arcane research.

The movement was encouraged by the (accurate) perception that new funding was available for old projects successfully recast as astro-biology. To some extent, success in securing funding has gone to those

*Actually, four rocks at the Viking 2 site were named Mr. Badger, Mr. Mole, Mr. Rat, and Mr. Toad after characters in The Wind in the Willows, but these never received the prime-time star billing that the Pathfinder cartoon-character rocks got twenty years later. +A teacher who changed my life by getting me to read the right books at the right time.

who could most eloquently describe, in astrobiological terms, whatever research they were already doing. This is not a bad exercise to have to go through—relating your work to the big picture. At any rate, it's what we call good academic survival skills, and if you don't have them, you're probably doing something else.

We've all done some of this repositioning. For over a decade, with funding from various NASA research programs, I've been making computer models simulating the evolution of the environments of terrestrial planets. These models can also be used to explore questions about the early habitability of local planets, as well as the habitability of Earthlike planets (still hypothetical, but not for long) around other stars. Recently I've received money from both NASA and the National Science Foundation to use my models in the service of astrobiology— something I used to mention only as an aside in my proposals.

Was this article helpful?

0 0

Post a comment