Space Studies Board

FISK, University of Michigan, Chair A. THOMAS YOUNG, Lockheed Martin Corporation (retired), Vice Chair SPIRO K. ANTIOCHOS, Naval Research Laboratory DANIEL N. BAKER, University of Colorado STEVEN J. BATTEL, Battel Engineering CHARLES L. BENNETT, Johns Hopkins University JUDITH A. CURRY, Georgia Institute of Technology JACK D. FARMER, Arizona State University JACK D. FELLOWS, University Corporation for Atmospheric Research JACQUELINE N. HEWITT, Massachusetts Institute of Technology...

Introduction

The resurgence in scientific interest in the potential for life on Mars began in the 1990s. It was recognized at that time that the types of extreme environments on Earth capable of supporting organisms, such as geothermal systems, hot springs, subfreezing environments, and the deep subsurface, likely existed on Mars and had the potential to support life there.1 The possibility of martian life gained visibility with both the science community and the public with the hypothesis of McKay et al....

Committee On An Astrobiology Strategy For The Exploration Of Mars

JAKOSKY, University of Colorado, Chair JAN P. AMEND, Washington University in St. Louis WILLIAM M. BERELSON, University of Southern California SUSAN L. BRANTLEY, Pennsylvania State University MICHAEL H. CARR, U.S. Geological Survey (retired) JAMES K. FREDRICKSON, Pacific Northwest Research Laboratory ANTHONY D. KEEFE, Archemix Corporation MARTIN KELLER, Oak Ridge National Laboratory HARRY Y. McSWEEN, University of Tennessee KENNETH H. NEALSON, University of Southern California BARBARA...

Preface

Scientific strategies for the exploration of Mars have been defined in recent years by various groups, including both the National Research Council (NRC) and NASA. The findings and recommendations of the Space Studies Board's reports Assessment of Mars Science and Mission Priorities (2003) and New Frontiers in the Solar System An Integrated Exploration Strategy (2003) are broadly consistent with the priorities outlined in the report of NASA's Mars Exploration Program Analysis Group (MEPAG),...

Exploration Methodologies And Instrumentation

What research activities would improve exploration methodology and instrumentation capabilities to enhance the chances of astrobiological discovery The vitality of Mars astrobiology science goals and investigations has not diminished with the delays in a Mars sample-return mission or the initiation of other activities. The ongoing missions (e.g., Mars Odyssey, Mars Express, Mars Exploration Rovers, and Mars Reconnaissance Orbiter) and the missions in development (Phoenix and Mars Science...

Info

FIGURE 2.1.1 Major events in the geological histories of Earth and Mars over the last 4.5 billion years. The timing of the boundaries between Mars's three major named geological eras is highly uncertain because of the absence of an absolute calibration of the ages of martian surface features. Moreover, the geological record of the earliest events in martian history, those of the so-called pre-Noachian era, has been largely erased by subsequent events, including the heavy bombardment that took...

In Situ Analyses Related To Life Detection Measurements Required

From the lessons learned from ALH 84001 and the early life on Earth debate (see Chapter 2), a multi-instrument, multi-measurement strategy must be used in robotic exploration and analyses to be able to make statements about the presence of biomarkers with any confidence. Although the focus of this section is in situ measurements, the same capabilities apply to the collection and analysis of samples returned from Mars. In situ astrobiological instruments must provide for the following tasks...

In Situ Analysis

The advantages of in situ analyses on Mars include the following Feasibility of analysis on shorter timescale because of funding levels more missions can be flown to multiple sites Possibility of time-resolved measurements of variable processes Possibility for analysis of more samples, which would provide additional context and flexibility Ability to look at labile components, with no storage issues Opportunity for active experimentation (manipulation of materials and observation of...

Executive Summary

From Mars Pathfinder to Mars Express, Mars Reconnaissance Orbiter, and the Mars Exploration Rovers Spirit and Opportunity, the recent spate of robotic missions to the Red Planet has led to a wealth of new information about the planet's environment, including strong evidence of a watery past and the possible discovery of atmospheric methane. In addition, new developments in our understanding of life in extreme conditions on Earth suggest the possibility of microbial viability in the harsh...