At the University in Cracow

The Vistula River is navigable for another four hundred miles south ofTorun.Three or four days on a barge brought Nicolaus within sight of the royal city of Cracow, with the spire of the cathedral on the hill looming skyward before him. Beside it was a massive Gothic castle, the residence of King Casimir IV. Casimir's father, Wladyslav II Jagiello, founder of the Jagiellonian dynasty, had given his name to the university in Cracow almost a hundred years earlier.

Cracow was several times larger than Torun, with a market square the size of four football fields. On all sides Nicolaus could feel the power and wealth of Poland. This was the Poland that his father and uncles had fought for a few years earlier. And now he was here to continue a glorious tradition. While Poland's strong Jagiellonian kings kept their enemies at bay, they also fostered studies in the arts and sciences to rival the older cultures of France and Italy. In particular, the university in Cracow had scarcely any rival in all northern Europe in the study of astronomy, for it had not just one, but two professors of astronomy.

A number of universities had begun in the early 1200s to prepare young men to be priests, doctors, or lawyers.

This courtyard of the Collegium Maius is the oldest part of Cracow University. Copernicus attended classes there from 1491 to 1495.

Women were not admitted until almost 1900. By the late 1400s scores of universities existed across Europe in many of the major cities.The program of studies was similar in all of them. Starting in their late teens, students enrolled first in the faculty of arts for four years. Some of them would then go on to more years in one of the faculties of theology, medicine, or law. Many who did not continue to those postgraduate studies became teachers.

Nicolaus Copernicus thus began his studies in the arts program at Cracow. Out of a total of 350 students in his class, about 150 were foreign, mostly from the German provinces to the south and west of Poland. With a total student body of about 1,500, the Jagiellonian University was more like one of today's liberal arts colleges than our great state universities with their many thousands of students.The language of instruction was Latin, and many of the lectures consisted

"Nicolaus, son of Nicolas," the eighth entry on this page of university records, shows that Nicolaus Copernicus has registered for the 1491-92 winter term at the University of Cracow and has paid his fees in full ("solvit totum").

of reading and commenting on the texts of the Greek philosopher Aristotle. This curriculum continued with little change for another 150 years.

More than 1,800 years before the time of Copernicus, Aristotle had conducted a school in Athens. For his students, Aristotle compiled and arranged the previous two hundred years of Greek scholarship, as well as adding a prodigious amount of text derived from his own studies. His numerous writings comprised a virtual encyclopedia of everything that was known at the time. And he put it all together into a tight system of logical relations, where everything depended on everything else.

Aristotle took the whole universe for his field of study. Typically his approach to any subject was to divide it into three categories. So, he divided his study of the universe into nature, God, and man. In nature he produced studies of the heavens, the earth, the classification of animal species, and meteorological features such as clouds, lightning, and meteors. All natural objects and the earth, he wrote, are composed of four elements: earth, water, air, and fire. The first two are heavy and have a natural tendency to move downward. The other two are light, and move naturally upward. From the sphere of the moon upward, the heavens are perfect and unchanging. They could not be composed of the four elements, so Aristotle proposed that the sun, stars, and planets consisted of a fifth substance, the ether. All ethereal objects moved naturally in circular motions.

"Nicolaus, son of Nicolas," the eighth entry on this page of university records, shows that Nicolaus Copernicus has registered for the 1491-92 winter term at the University of Cracow and has paid his fees in full ("solvit totum").

For Aristotle, God was entirely a spirit, an all-knowing knower and an unmoved mover. It was God who kept the whole universe in order and in motion. Humans consisted partly of matter and partly of spirit.To account for the various parts of nature, Aristotle said that plants contained the soul of growth. To that was added a soul of motion for animals. And for humans he added a reasoning soul. God, on the other hand, was pure reasoning soul.

Notions such as these formed the basis for Copernicus's studies in Cracow. But how was it that the works of an ancient Greek philosopher had survived for so long? For a thousand years after the time of Aristotle, his manuscripts were copied and studied in a few academic centers in the lands around the eastern end of the Mediterranean.After 800 ce,Arab culture took up Aristotle's works as it flowered under Islam, the religion of Mohammed. Baghdad (in present-day Iraq), where Aristotle's works were translated into Arabic, was a particular focal point of scholarship. And when Islam spread across North Africa and into Spain, scholars took Aristotle's works with them.

In Spain after about 1000 ce, Islamic culture came into contact with the Latin culture of Europe. Europe had been in decline since the fall of the Roman Empire five hundred years earlier. Now Europeans found an advanced system of knowledge in Islamic culture in Spain. For the next two hundred years many of Aristotle's works were translated from Arabic into Latin. At the same time, several influential European scholars translated his writings directly from Greek into Latin. These Latin translations of Aristotle's works formed the foundation for the new universities that soon began to appear.

As European universities developed, their professors analyzed and commented on Aristotle's writings. Sometimes Copernicus studied books of commentaries, although he and his fellow students read Aristotle, too. Students also learned about mathematics and astronomy.

They studied the geometry of Euclid, a Greek who lived in Alexandria (in present-day Egypt) around 300 bce. Euclid's textbook was still being taught in the early 1900s.

Copernicus's study of geometry trained him in logical relationships and gave him skills to study astronomy. The ancient Greek astronomer Claudius Ptolemy, who lived around 150 ce, had devised geometrical models to compute the positions of planets for any time in the past or future. In Baghdad, scholars translated his works (including those on astrology and geography) into Arabic. His work on astronomy, the Almagest ("the greatest" in Arabic), was translated into Latin at about the same time as Aristotle's works.

However, as the Almagest is very technical, the university professors normally taught a simplified version of basic astron-omy.They very frequently used a small work written in the early 1200s by an English mathematician,John of Holywood.

text continues on page 31

In this scene of Aristotle teaching astronomers as imagined by a 13th-century Persian artist, the Greek philosopher is holding an astrolabe. This device was common in the 13th-century Arab world but unknown in the fourth century BCE when Aristotle lived. Although this astronomy class never happened, Aristotle did influence Arabs' understanding of astronomy through his writing.


Although some modern astronomy textbooks have sold in hundreds of thousands of copies, the astronomy textbook that has the greatest number of different printed editions was written almost eight hundred years ago. An Englishman, John of Holywood, who worked in Paris using the Latin form of his name, Johannes Sacrobosco, composed this short and simple textbook on the celestial sphere around 1220. His On the Sphere circulated in a manuscript version for two and a half centuries until it was first printed in 1476.

While Sacrobosco's On the Sphere served as a popular basic textbook, it said almost nothing about the motions of the planets. So, in the next generation, sometime around the middle of the 13th century, a more advanced textbook joined the ranks, Campanus's Theorica planetarum. The Latin words may tempt you to translate this as Theory of the Planets, but actually the meaning of theorica is more like "model" or "device."The book explains, in simple mechanical terms, how Ptolemy's theory worked.

Observations of each of the planets showed that they usually moved eastward against the background of stars, but sometimes, every year or so and at different times, each one stopped and then moved westward for a few weeks. This phenomenon is called retrograde motion. Around 150 ce the Alexandrian astronomer Claudius Ptolemy proposed a geometric model to account for this backward motion. His model involved two circles, one riding on the other.The bigger main "carrying" circle that went around the earth was called the deferent (the root fer, is the same as in the wordferry).The smaller circle, which was carried around on the deferent, was called the epicycle. In turn, the epicycle carried the planet itself. The combined motion of the two circles made the planet appear to move backward in the sky whenever the planet swung around into the inside, closest to the earth.

Soon after a German printer, Johannes Gutenberg, invented printing by movable type in the 1450s, a professor of astronomy at the University of Vienna, Georg Peurbach, wrote an updated version of the Theorica. (By the way, Georg is the German spelling of George, and it is pronounced Gay-Org.) His Theoricae novae planetarum was a new textbook on Ptolemy's

Regiomontanus Epicycle
The diagram shows to scale the deferent and epicycle that produces Marss retrograde loop. The same epicycle is shown here in two positions as it carries Mars around from Mi into its retrograde loop at M2.

planetary models (not "new models"). However, Peurbach included an idea that had become popular during the Middle Ages. He tried to show how Ptolemy's deferents and epicycles could be embedded within a framework of transparent, crystal material, thereby building an actual picture of how the cosmos could be constructed.

Aristotle had proposed that the love of God spun the heavens every 24 hours. The system of crystal spheres gave an idea of how the motions could be transmitted mechanically from the outside in to the solidly fixed Earth in the center of the system. God in heaven, beyond the sphere of fixed stars, continues on page 30


continued from page 29

could generate all the spin needed to keep the heavenly clockwork going. This structure fit perfectly with Christian, Jewish, and Islamic ideas about the nature of the created universe. It was against this deeply ingrained picture that Copernicus began to consider a radical alternative scheme.

This diagram from the 1473 edition of Peurbachs New Theories of Planets shows how structures of celestial crystal (the two thick, black rings) could be arranged to match observations of the planets. When rotated, the rings drive the planetary epicycle along the channel between them. This model could be applied to Mars, Jupiter, and Saturn.

text continued from page 27

His text, On the Sphere, did little more than describe the shape of the heavens and the earth, and explain such things as the seasons. In Copernicus's very first year at Cracow in the winter of 1491, the university's astronomy course used this text, and he undoubtedly listened to these lectures.

In the winter of 1492, the university offered lectures on Euclidean geometry. By now the teenage Copernicus had begun his lifelong love affair with mathematical astronomy. He obtained a copy of Euclid's Geometry, which had been printed for the first time in 1482, and a Latin translation of an Arabic text on astrology.

Later, in the summer term of 1493, Copernicus learned about the motions of the planets from a recent update of a traditional book on planetary theory. Like every astronomy book then available, it assumed that the earth was fixed at the center of the universe, and the planets revolved around it. Georg Peurbach wrote New Theories of the Planets in Vienna in the 1450s. His book discussed the old planetary geometry, but it also included a new treatment of how the old models derived from Ptolemy could be fit together. Often reprinted, Peurbach's book initiated an enlarged interest in technical astronomy throughout Europe. Before his early death at age 38, he had begun an improved translation of Ptolemy's Almagest. His work was continued by his pupil Regiomontanus, whose publications became of great importance to Copernicus.

To be able to cast horoscopes, students needed more advanced courses to learn to use tables of planetary motion so that they could find the positions of the planets for the date of the horoscope. In the winter term of 1493, Copernicus heard lectures on the Tabulae resolutae (Handy tables), astronomical charts that were especially popular in Cracow. Perhaps it was at this time that he obtained and had bound together printed copies of two sets of astronomical tables, along with 16 blank pages for extra notes. One, the

On the imaginative title page of the 1522 edition of Saavbosco's little book on celestial spheres, a master with the armillary sphere explains the celestial motions to a younger scholar with the laurel wreath and manuscript. One of the figures may represent the author of the explanatory commentary in this edition, Matthew of Shamotula.

Alfonsine Tables, had just been printed (for the second time) in Venice in 1492.The other, compiled by Regiomontanus in 1467, was printed in Augsburg, in southern Germany, in 1490. On several of the blank pages Copernicus copied parts of a table by Peurbach. They indicated times of eclipses of the sun and moon, and a set of latitude tables. Evidently, the star-struck youth was becoming immersed in astronomy.

Nicolaus left the university in 1495, after four years in the faculty of arts, but without taking a degree. The degree would only be needed for teaching, and Nicolaus expected his uncle, Bishop Lucas Watzenrode, had other plans for him. He set off for Frombork to find out what his uncle would decide. If he undertook further studies, Nicolaus was confident he could pass any required entrance examinations.

Historians know only a little about Nicolaus's brother Andreas. At every stage of life except birth and death he seems to have followed behind his younger brother. He died 25 years before Nicolaus, in 1518. Even when they enrolled at the university in Cracow, Uncle Lucas seems to have had less faith in Andreas's ability than in that of his younger brother. Records show that Nicolaus paid his full fee, but Andreas did not—perhaps he did not carry a full load of courses. Nicolaus enrolled for graduate study in 1496, while his brother enrolled two years later. In 1499, Andreas was called a "cleric of Chelmno,"but Nicolaus had had that title three years earlier, with both appointments arranged by Uncle Lucas.

Shortly after Nicolaus arrived in Frombork in 1495, one of the 16 canons of the Cathedral Chapter ofVarmia died. Uncle Lucas nominated Nicolaus to fill the vacancy. However, the rule at the time required final approval of appointments in an odd-numbered month by the Vatican. As the vacancy had to be filled in September (an odd-numbered month), Bishop Watzenrode did not have the final authority, and for several months the appointment was under dispute for reasons now unknown—perhaps there was a rival candidate. Eventually the matter was settled so that Nicolaus was securely in the position well before his older brother Andreas received his nomination in the summer of 1501.

Still, at age 24, Nicolaus was uncertain about the career he should follow. Then in the summer of 1496, Lucas arranged for Nicolaus to take the next step along the path he himself had followed. He sent Nicolaus to study church law at the University of Bologna in Italy. We do not know if Copernicus had appealed for a chance to continue astronomical studies.As he depended on his uncle for support, he had little say in the matter. But he did make sure to include his precious book of astronomical tables in his baggage.

A surgeon, usually a barber, dissects a corpse before a group of medical students while the professor (at the left) reads the instructions. The illustration is from the title page of an anatomy textbook published in Venice in 1559.


Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment