x f1 , (A -1)(c +1)). „ = _L_ [i | (A - 1X<T +1) 3a(c +1): cr-1 ^ 2c / a-11 2 4(cr-1)

Approximately at p > po index y in the power spectrum can be presented as

a the index y increases with increase of the parameter = 4k/T\u\ = 4k2/72^2 . The account of energy lose leads to particles appearing with momentum smaller than that of injected particles. The relative contents of these particles depends on the value of the parameter a (e.g., at a << 1 momentum spectrum at p < po falls very quickly to zero as ^ p1 a).

The account of energy loses leads also to the sufficient change of space distribution of accelerated particles: behind the front it becomes non-homogeneous (the concentration falls with increasing of the distance from the front), and before the front the fall of the concentration of accelerated particles becomes more quick, approximately as ^ exp(- 3|x|uia/Ki(cr- l)).

Was this article helpful?

0 0

Post a comment