Info

lnfoN)+(3/(2-P))to(x/(( -T + x)) _ (x)-((( -Tj + x)) (242 15)

)+ (3/(2-P))ln(x/(( - T + x)) (Vx)-(V(Tj - T + x))' ^ ' '

ln(N1lN2)+(3/(2-iMx/fe -T + x)) _ (1/ x)-((( -T + x)) (242 16) ln^/N)+ (3/(2-^)ln(x/(?4 -( + x)) (1/x)-(1/(T4 -T + x))' ^ ' '

After excluding from Eq. 2.42.15 and Eq. 2.42.16 unknown parameter P, we obtain equation for determining x:

x2((«2 - a3a4)+ xd((¿>2 + - 0364 - b3«4)+ d2 (bb - ¿3^4)_ 0, (2.42.17) where d _ ((2 - T )(( - T )(( - T), (2.42.18)

«1 _ (T2 - T )(( - T )ln((1/N3) - ((3 - T )(( - T1 )ln((^N2), (2.42.19)

«2 _ (3 - T - T )ln(x/( - T1 + x))- (( - T1 )( - T)ln(x/((4 - ( + x)), (2.42.20)

«3 _ ((2 - T )(( - T )ln((^N4) - ((3 - T1 )(( - T )ln((^N2), (2.42.21)

«4 _ (3 - T- T )ln(x/( - T + x))- (( - T )( - T )ln(x/((3 - T + x)), (2.42.22)

b1 _ ln((jN3)-ln((^N2), b2 _ ln(x/(t2 - T + xln(x/(t4 - T1 + x)), (2.42.23)

b3 _ N4) - N2), b4 _ ln(x/(t2 - T1 + x)) - ln(x/(t3 - T1 + x)). (2.42.24)

As it can be seen from Eq. 2.42.20 and Eq. 2.42.22-2.42.24, coefficients «2,«4,b2,b4 very weekly (as logarithm) depend from x. Therefore Eq. 2.42.17 we solve by iteration method, as above we solved Eq. 2.42.6: as a first approximation, we use x1 _ T1 - Te ~ 500 sec (which is the minimum time propagation of relativistic particles from the Sun to the Earth's orbit). Then by Eq. 2.42.20 and Eq. 2.42.222.42.2 we determine «2 (x1), «4(x1), b2(x1), b4(x1) and by Eq. 2.42.17 we determine the second approximation x2, and so on. After determining x, i.e. according Eq. 2.42.12 determining t1, t2, t3, t4, the final solutions for P, k1(r), and No(R) can be found. Unknown parameter P in Eq. 2.42.10 we determine from Eq. 2.42.15 and Eq. 2.42.16:

Was this article helpful?

0 0

Post a comment