Equipment For The

On a planetary imaging trip you will need to cart several thousand dollars worth of fragile equipment to your destination so, the first point to note is that you will need adequate travel insurance. Your basic insurance will almost certainly be inadequate. Also, when observing far from home, you cannot suddenly dash indoors to get some vital piece of equipment if a problem arises. Therefore, some forward thinking is highly advisable. Note well the bits and pieces you use at home before you fly abroad. Note very well the dodgy bits of your telescope that might "drop off" in transit and carry some spare parts if possible. Forgetting one vital item could mean you fail to secure any results on the best night. What sort of things am I talking about here? Well, for a start, the most vital observing accessory I have is a hairdryer; an absolutely essential piece of equipment in the nighttime U.K. climate. Even with the commercial dew heater equipment available, there are still nights when only a hairdryer will stop something misting over. Plus, planetary observers tend to shun anything that generates heat all of the time; far better to let everything equalize in temperature and then to bag some images before the next application of heat. This leads to another point. If you are observing alone on some high-altitude spot, far from your apartment, you will need loads of batteries, and I do not know of any decent battery-powered hairdryers. The best place to observe from is a balcony well above ground level; preferably one that faces south (or north if you are in the southern hemisphere). Access to unlimited electric power is so vital when you are running a telescope for hour after hour. Contrary to popular belief, the heat from buildings is not a planetary killer. The ground itself is a source of heat and your telescope has to be mounted on some form of ground unless you have an antigravity platform! A south-facing balcony within easy access of facilities is the best kind of observatory you can have. Failing that, site the telescope outdoors and pack enough electrical cable and adaptors to reach the indoor supply. Plus, do not forget the safety issues here: damp grass and high voltage do not go well together. You need to be familiar with the local electrical plug design and bring plenty of adaptors. Is the local electricity 240 volts or 115 volts? Will your telescope work on either? What, precisely, is the pin spacing on the typical electrical power socket? In 1995 and 1998 I traveled to India with eclipse and Leonid meteor expeditions. On both occasions matchsticks were provided with which to help jam your electrical appliance into the wall socket. India is renowned for its unpredictable electrical supply and wall sockets. A friend of mine stayed in an Indian hotel room where the light switches for his room were in the next door room and vice versa! To adjust the bedroom lighting you hammered on the wall so your neighbors could switch your lights on or off, regardless of what activity they were involved with at the time!

A balcony observing platform next to your bedroom is a godsend. If it is cloudy at first you can get some sleep in the evening and then roll out of bed and just stagger a few yards to your observing station. No need to strain your back hauling your equipment about, it is already set up a few yards away, ready to be wheeled out onto the balcony. If you are worried about polar alignment, don't be. You only have to do it once, and then just align the telescope tripod on marks on the floor the next time. However, locating the pole star can be a fraught business when near the equator if you cannot see Polaris. Nevertheless, by observing which way stars drift when they are near the horizon, or on the meridian, will tell you how close you are to being polar aligned. Polar alignment is not supercritical for planetary work and even rough aligning within a few degrees of the pole will allow good images to be secured. The main disadvantage will be that planets tend to drift out of the webcam field in 5 or 10 minutes with this magnitude of misalignment.

While we are on the subject of equatorial mountings, it is worth simulating (months before you fly off) just how your telescope behaves when the polar axis is much closer to being horizontal than at home. In the worst case it might not permit adjustment to that low an elevation, or it might simply fall over! At high latitudes the center of mass of your telescope may well sit directly over the mount; an ideal situation. But at low altitudes the telescope mass may try to tip the whole mount and tripod over; maybe the whole telescope and mounting will cartwheel over the balcony railing, plunge 10 stories and kill a crowd of people beneath. OK if your mother-in-law is one of them: not OK if the local Mafia boss was underneath. All of these nightmare scenarios need consideration.

Then there is the issue of ensuring the telescope arrives safely and not as a pile of broken glass and twisted plastic. While most airline baggage handlers are not reckless people, they do throw suitcases and unmarked personal luggage around in a manner not dissimilar to a rugby player. Some of them are genetically very close to being Neanderthal throwbacks. A telescope needs to be transported in a rigid equipment case, clearly labeled with banners saying things like FRAGILE, DO NOT DROP, THIS SIDE UP, and GLASS all over the outside. Baggage handlers are not psychic; they do not know what is in a box unless there is a big label. Inside the case there should be a firm foam insert, snugly housing your optical tube assembly (OTA). A professional photography type case is ideal, i.e., a lightweight aluminium casing that can be properly locked, but a homemade housing is OK providing it is rigid, dent proof, and filled with a suitable foam insert cut to the telescope OTA shape. A Newtonian telescope can be completely disassembled for transportation if required. The heavy primary mirror can be packed in its own compact box ensuring that its weight does not result in it escaping the mirror cell in transit (this does happen, even when Newtonians are delivered from professional dealers). Modest-sized primary mirrors (under 30-cm diameter) typically weigh less than 10 kilograms and can easily fit in a small box surrounded by clothing, as padding, in a domestic suitcase. Newtonian secondary mirrors are usually glued to their holders and rarely come out. But if they are not glued, removing them in transit is a consideration. Also essential when traveling abroad is a complete set of screwdrivers, wrenches, and Allen keys for every component that might come loose or need adjusting. Most astronomers when traveling abroad have to pay an extra charge for baggage allowance as they exceed their personal limit. (I know one observer who never pays extra, he just goes with his wife and bans her from taking any spare clothes!! She stinks like a mule by the end of the holiday, but that is the price you sometimes have to pay.) Make sure you know how much you will be allowed to take and how much you will be charged per kilo of extra weight. At the time of writing, packages over 32 kilograms in weight were banned by some low-cost airlines, regardless of the traveler wishing to pay an appropriate excess fee. When you arrive at some countries with a box of expensive-looking equipment in its original crate, customs officials may grab it and claim you are importing equipment. You may have to sign complex forms and retain those forms for when you leave the country: you have been warned!

One unnecessary item of extra poundage is the telescope counterweight. Carting lumps of lead on holiday is unnecessary with a bit of forward planning. Hollow counterweights made from metal cylinders can be used as substitutes. These can be filled with sand or soil (or bodily waste) at the observing site, thus saving multi-kilograms in excess baggage.

Amateur astronomers have never lacked versatility when traveling abroad. I know of one German amateur, with an axe, who made a very efficient pseudo-Dobsonian mounting from his hotel bedside table on the 1991 Mexico eclipse. I dare say the hotel authorities were unimpressed, but he was back in Germany by the time they missed it. When staying in hot countries that do not have the highest quality sanitation, make sure you drink plenty of water (to avoid dehydration) and make sure it is bottled or boiled. Also, avoid salads, cream, ice cream, or anything that isn't fully cooked. Stomach upsets can ruin a holiday and ensure no observing is done. I have had friends who have had such serious stomach upsets that they have had to fabricate a home-made rectal bung for long bus journeys. On the return journey home one of these friends suffered serious constipation. On arriving back in England he bent over to open the eyepiece drawer in his home and the acoustic volume of the resulting flatulence woke next door's tortoise from its winter hibernation. To this day the tortoise is still receiving trauma counseling.

When observing in hot countries you may well encounter annoying biting insects that come out at night. Be especially wary of mosquitoes, some of which can carry malaria. Make sure your inoculations are up to date for the area you are visiting. A multiple insect repellent strategy may be required, as depicted in Figure 5.3.

Hot countries may also cause overheating of telescope tubes. Such a problem was encountered by Damian Peach on one foreign trip and it was necessary for him to remove the telescope tube and fancool it indoors, as shown in Figure 5.4. However, such countries do enjoy very pleasant night-time temperatures (Figure 5.5), a world apart from the winter observing conditions here in the U.K. Incidentally, Damian spent three weeks in Barbados in April 2005, and from the grounds of a rented villa on the south of the island he reported clear skies and near-perfect seeing on 19 out of 21 nights. There was far less variation between the day- and nighttime temperatures on the island than one would experience on a continent and Damian declared the island to be "truly blessed with near-perfect seeing." He estimated that an instrument of 35-cm aperture would be needed to really do justice to the conditions there, although, of course, larger apertures generally have much worse thermal problems.

Whenever I have traveled on a solar eclipse expedition or any other type of astronomical expedition I have always carried out several dry runs with the equipment I intend using on the trip. It is amazing what can be overlooked. For example, when planning for a total solar eclipse, many first-timers forget that it quickly gets very dark as totality approaches. Suddenly you cannot see your equipment! This is just one example. Before you leave for the trip you need to get all the equipment

Figure 5.3. Damian Peach armed to the teeth with mosquito deterrents, ready for a nighttime observing session in Barbados! Image: Damian Peach.

that you will take abroad (no more, no less) outside, in the dark, and see if it works. If you find that you need something extra, that you had not planned to take, make a written note. Forgetting something vital can be disastrous when you are thousands of miles from home. An equipment checklist should be started months before the trip and, when something occurs to you, just add it. Here is a start for you, from my own astro-holiday master list:

Telescopes Mastery

Telescopes Mastery

Through this ebook, you are going to learn what you will need to know all about the telescopes that can provide a fun and rewarding hobby for you and your family!

Get My Free Ebook

Post a comment