Rocket

As the airplane continued to see slow but continuous improvements throughout the early years of the twentieth century, others were thinking beyond the atmosphere. They were considering the future of spaceflight by rocket. The main characters in this story were the reclusive Russian schoolteacher Konstantin Eduardovich Tsiolkovskiy, the German genius Hermann Oberth, and the American physicist Robert Hutchings Goddard. These three men, early on, represented the three nations that would play pivotal roles in the fascinating saga of the spaceship over the course of the ensuing century (Figs. 1.3 and 1.4).

It was Tsiolkovskiy who first wrote about the value of liquid propellants as the modus operandi of future spaceships. By 1895, he recognized that, unlike solid-propellant rockets, liquid-propellant rocket engines could be controlled, throttled, turned off, and turned back on. This would enable much greater flexibility in the execution of flights in the cosmic realm. Liquid fuels such as hydrogen, with their low molecular weights, would give the required impulse to

Fig. 1.3 Rocket pioneer Hermann Oberth (1894-1989) Lived to see men walk on the Moon and spaceplanes land on Earth (courtesy NASA)
Fig. 1.4 Dr. Robert H. Goddard (1882-1945) at work in 1924 at Clark College, Worcester, Massachusetts, 5 years after writing his Smithsonian-published paper "A Method of Reaching Extreme Altitudes" (courtesy NASA)

these spaceships. Oberth's contribution was the 1929 publication of a detailed treatise entitled Wege zur Raumschiffahrt (Ways to Space Travel). This was a greatly expanded version of his 1923 work Die Rakete zu den Planetenräumen (The Rocket to Interplanetary Space). But it was the American, Robert Goddard, who first turned the physics of the liquid-propelled rocket into a practical flying device. On March 16, 1926, from a field at his Aunt Effie's farm near Auburn, Massachusetts, he launched the first liquid fuel rocket. The device did not look much like a rocket (Fig. 1.5), but it demonstrated the rocket principle amply enough, rising to an altitude of 41 ft and crashing to the ground 2'/2 s later. It reached a speed of 64 mph.

Was this article helpful?

0 0

Post a comment