Spaceflight is a dangerous business, in space, on the ground, and in between. One of the reasons for this is the nature of the volatile chemicals used to power the engines. That volatility comes about as a result of the high energy content of the propellants, which in turn is necessary because of the high energies required for spaceflight. Understanding the causes of every mishap and every near mishap in the history of rocketry and spacecraft engineering is vital in building the spaceplanes and spaceflight infrastructure of tomorrow. Indeed, entire volumes have been written on this topic for this very purpose.3,4

Safety, simplicity, and reliability are all interrelated. Simplicity of operations, further, influences the economics of the spaceplane. And only the most economical spaceplane will survive the market.5 Taking its lead from the airline industry, the successful spaceplane must use horizontal take-off and landing and some kind of very reliable air-breathing engine. In this way it can operate independently of a carrier aircraft, and need not use rockets from the runway (Fig. 5.9). Noise concerns alone would otherwise conspire to ground the spaceplane before it could ever begin operations.

Fig. 5.9 Douglas Skyrocket takes off with small "jet assisted take-off' rockets in 1949 (courtesy NASA)

Was this article helpful?

0 0

Post a comment