Objects That Pose a Threat

All objects that can someday cross Earth's orbit have the potential to collide with the planet. This includes not only objects that regularly approach Earth but also others whose paths may change over time in a way that would make them cross Earth's orbit. The objects that fall into this category are asteroids and comets in short-period orbits—together called near-Earth objects (NEOs)—and those long-period comets that make their closest approach to the Sun inside Earth's orbit. Short-period comets complete their orbits in less than 200 years and so likely have been observed before; they generally approach along the plane of the solar system, near which lie the orbits of most of the planets, including Earth. Like short-period comets, most known Earth-approaching asteroids have orbits tilted by less than 20° to the plane of the solar system and periods of less than about three years. Long-period comets have orbital periods greater than 200 years and usually much greater; they can approach from any direction.

The amount of damage caused by the impact of an object with Earth is determined primarily by two factors: the object's mass and its relative velocity. These determine the total kinetic energy released. A typical NEO would strike Earth with a velocity of about 20 km/sec (12 miles/sec) and a typical long-period comet with a greater velocity, 50 km/sec (30 miles/sec) or higher. For objects with diameters less than a few hundred metres, their physical properties are important in calculating how much

Crater in Quebec, Can., one of the largest fairly well-preserved impact craters on Earth, as seen from the International Space Station on April 28, 2002. A ring-shaped hydroelectric reservoir lake 70 km (40 miles) in diameter occupies the centre of the crater. The original outer rim, which measured 100 km across, has been worn down by erosional processes. The impact that formed the crater is estimated to have happened some 210 million years ago, near the end of the Triassic period, and may have played a role in the mass extinction of species that occurred about the same time. NASA/Johnson Space Center destruction would result, but for larger bodies only the total energy of the impact is important. Hence, most damage assessments are based on the kinetic energy of an impact rather than the diameter or mass of the projectile. This energy is expressed in millions of tons (megatons) of TNT, the same units used to quantify the energy released by thermonuclear bombs.

The energy released by an impact falls between about 10 megatons and 1 billion megatons—i.e., between 700 and 70 billion times the energy of the 15-kiloton atomic bomb dropped on Hiroshima, Japan, in 1945. This very wide range

corresponds to NEOs with diameters from about 50 metres (160 feet) to 20 km (12 miles) or to long-period comets with diameters about half as large. (Objects smaller than about 50 metres would break up high in the atmosphere; the damage would be limited to less than a few hundred square kilometres around the impact point.) For an object at the lower end of this size range, an ocean impact could cause more damage than one on land because it would result in large tsunamis that would devastate coastal areas for many kilometres inland.

Was this article helpful?

0 0

Post a comment