From Tally Marks to Calendars

How did people begin to make links between different cycles of activity they observed around them and hence begin to understand and control the periodic changes in the natural world as they perceived it? At what stage did they start consciously to plan their own actions in accordance with those perceptions?

Groups of people from the earliest times would certainly have varied their subsistence activities in accordance with the seasons, whether these involved searching for edible plants and animals, fishing, or hunting. But in this alone they were little different from many others in the animal kingdom: many birds, after all, undertake seasonal migrations. Two characteristics that have distinguished humankind for several tens of thousands of years are people's capacity for abstract thought—making connections between things in order to satisfy the desire to make sense of them—and the use of symbolic representation to express ideas. There is ample evidence of the latter in the Upper Palaeolithic, in the form of systematic markings on many small portable objects such as pieces of bone. Their meaning is much debated, but it has been suggested that some at least represented rudimentary lunar calendars—tallies of days or some other sort of symbolic notation relating to the lunar phase cycle. The most famous example is a fragment of eagle's wing found in a cave at Abri Blanchard in southern France, dating to around 30,000 b.c.e. (see abri blanchard bone). Some much more recent, and less controversial, examples of possible lunar tallies among hunter-gatherers are found in rock art from northeastern Mexico. The site of PRESA DE LA MULA, near Monterrey, is one of two petroglyphs that seem to record counts of days stretching over seven synodic (lunar-phase-cycle) months, divided up according to the appearance of the moon. However, these designs were not calendars: they were clearly not intended for regulating future activities. Rather, they were first-hand observational records, with all the vagaries and imperfections this implies.

Counting days, as such, is unlikely to have been an overriding issue for most people in the past. They had to be aware of many different cycles of activity in their lives. One of the most effective ways of keeping track of things is through myth and appropriately timed ritual performance. These were invariably tied in, along with many aspects of living and being, with the unchanging entities in the sky and the ceaseless cycles in which they were seen to move. Stories help describe the world and explain why things are as they are. Ceremonies serve in a very active way to affirm the natural order. Stories and ceremonies also involve an ele ment of control, in that their successful performance, with adherence to strict protocols, is often seen as necessary—even vital—in order to ensure continuity, renewal, and growth. The appropriate rituals may ensure the arrival of the sun on a given morning, or bring about the reversal of the sun's winterward movement so that it will return and give greater warmth again each spring. Whether performed by a lone shaman, by whole communities working in unison, or by a powerful priest with the active participation of a controlling elite, rituals, ceremonies, and other performances can ensure that the order of the cosmos, and of the lives of the people within it, is duly maintained. The Blessingway and other sacred rites of the Navajo people are just one example of performances of this kind recorded in modern times and, in some cases, continuing to the present day, both among native Americans and among indigenous peoples around the world. The Bless-ingway ceremony serves to ensure good health, prosperity, and so on by preventing misfortune, and involves detailed renditions of the Navajo creation story (see NAVAJO COSMOLOGY).

What may be an extremely old tradition of myths and performances relates to the identification of two bears circling around the northern celestial pole. The evidence to support this assertion, paradoxically, is found in modern oral traditions across Europe. In the Basque country, the bears' motions around the celestial pole are linked to an annual cycle of storytelling and song and dance performances involving whole communities. other variants are found throughout Europe. Constellation myths within the framework of Greek and Near Eastern thought form an integral part of the modern Western heritage, but the prevalence of indigenous bear myths suggests that two circumpolar bears are star figures emanating from much older cosmological traditions (see sky bears).

In the 1969 book Hamlet's Mill, Giorgio De Santillana and Hertha Von Dechend suggested that specific astronomical knowledge—namely the gradual shifting of the entire mantle of stars over the centuries due to a phenomenon known as PRECESSION—had been systematically "encoded" in mythological narratives all over the world over a period of many millennia. There are various problems with the evidence presented in support of this idea, but there is also a fundamental difficulty with the idea itself. It presupposes an almost universal concern in ancient times with a particular concept (precession) familiar to ourselves. This is very different from arguing that some communities in certain places and times might have had stable enough cosmologies—sky knowledge passed down accurately enough over several generations—to have noticed the gradually changing appearance of the sky and attempted to come to terms with it in one way or another.

The point about the sky bears, on the other hand, is that we may be glimpsing an ancient framework of understanding very different from the Western one. According to the American linguist Roslyn Frank, who has investigated the relevant European folk traditions in detail, it was a framework in which earthly bears were venerated. she argues that a human individual playing the role of a bear shaman acted to maintain the cosmic order, organizing the cycle of earthly ceremonial in tune with the annual cycles of the stars. If Frank is right, then we should not look back to some sort of universal, all-prevailing myth or cosmology, diluted with time, but rather to one that always coexisted with many others. one would have to argue that it achieved particular prevalence at high northern latitudes because it brought together what was seen on earth and in the sky in a particularly effective and understandable way; thus it tended to propagate, encountering and mixing with other traditions, and eventually leaving traces visible in folk traditions to this very day.

Another way in which a people can affirm the perceived cosmic order is by carefully timed movement through the landscape. The Lakota people of South Dakota, for example, traditionally keep their subsistence activities in tune with other seasonal cycles by moving from one place to another in an annual pattern that, as they see it, reflects the sun's movement through the constellations (see lakota sacred geography). Their annual round combines subsistence activities focused upon the terrestrial movements of the buffalo, with sacred rites focused upon the celestial movements of the sun. In doing so, it ties together earth, sky, and people into a comprehensible whole, thereby keeping everything in harmony. The Mursi of Ethiopia perceive a direct connection between the successive disappearance of four bright stars in the southern sky and events on the ground related to successive floods of the river omo. This enables them to time their annual migration to the banks of the omo precisely enough to carry out the vital planting of their crop of cowpeas within a few days of the river's final flood.

Can we hope to find, in the material record, evidence of astronomically timed movement through the landscape in the past? If we could determine the times of year when certain sites or locations were occupied, and if we could spot symbolic links between these places and the sun or stars, then it is certainly possible that this could give us some clues. Symbolism relating to a solstice, at a site that is occupied around the time of solstice, is one possibility. It has been suggested that chaco canyon in New Mexico was a focus for sacred pilgrimage for Anasazi (ancestral Pueblo) communities in the surrounding area around the eleventh century c.e. The archaeological evidence for this is supported by ar-chaeoastronomical evidence that people in the outlying communities used astronomical observations to synchronize their convergence upon Chaco. Another, much older, example of a similar phenomenon occurs at thornborough, a group of Neolithic henges in Yorkshire, England. Here the archaeoastronomical evidence consists of a series of alignments upon the rising position of the three stars of orion's belt, suggesting that it might have been the first predawn appearance (heliacal rise) of this asterism that triggered an annual pilgrimage for an autumn festival at the henges.

In modern indigenous societies, we see ample evidence of the various ways in which people strive to harmonize what they do with cycles of events in the nat ural world. Studies of tally counts, astronomically related myth and ritual performance, and patterns of ritual movement have begun to reveal some of the ways in which this may have been done in the past. Calendars—self-consistent systems of marking time—developed from these more rudimentary perceptions of correlations between different cycles of activity in nature, and the desire to keep human activities—ones that we might identify as sacred, mundane, or having aspects of both—in tune with natural events. The cycles of change of the celestial bodies—regular, immutable, and reliable—are clearly of particular importance in this context.

It is commonly assumed that there is a natural progression of calendrical development relating to astronomical observation. The first step is to develop a simple month-by-month calendar based on the phase cycle of the moon, the most obvious cycle in the night sky. However, because there are between twelve and thirteen synodic (phase-cycle) months in a solar year, it follows that in order to keep in phase with the seasons, one needs to have twelve months in some years and thirteen in others. The second step, then, is to take note of phenomena that are related to the seasons, including astronomical ones, using them to keep lunar calendars in pace with the seasonal year by inserting or omitting a month from time to time as required (see lunar and luni-solar calendars). The ancient Egyptians, for example, used the first predawn appearance (heliacal rise) of Sirius, the brightest star in the sky, to keep the start of the new year in step with the annual flood of the Nile. Sirius would have been first seen approximately eleven days later in the twelfth month each year. Whenever it did not appear until the last few days of the twelfth month, then an extra or intercalary month was added so that it would continue to rise in the final month of the following year.

A seasonally related phenomenon of particular importance is the changing rising or setting position of the sun along the horizon (see solstices, solstitial directions). Once a society recognizes this, they can use it to regulate a solar calendar that is entirely independent of the moon. If the horizon is sufficiently distant and contains a good many distinctive points, then such a calendar can quite easily be kept accurate to within two or three days of the "true" solar year. One of the classic modern examples of a solar horizon calendar is that of the Hopi people of Arizona. As first recorded by the ethnographer Alexander stephen at the end of the nineteenth century, solar horizon observations were used by the Hopi both to regulate crop-planting activities and to pinpoint events within an elaborate ceremonial calendar (see hopi calendar and worldview).

The final step in the development of luni-solar calendars is to replace the ad hoc insertion or omission of intercalary months by a systematic procedure. By about the fifth century b.c.e., the Babylonians had developed a fixed system whereby a thirteenth month was inserted into seven different years, in a fixed pattern, within every period of nineteen years (see BABYLONIAN ASTRONOMY AND AS

trology). This Metonic cycle, named after the Greek astronomer Meton, keeps the lunar calendar in step with the solar year to within an error of just one day in every 200 years.

The Babylonian calendar was an impressive achievement made possible by systematic astronomical observations recorded over many generations. However, ancient calendars do not inevitably follow the progression just described (and even in Babylonia itself, calendrical developments were more complicated). The Mursi yet again provide a good example. They have what, to an outsider, looks like a thoroughly haphazard calendar in which no one ever seems to know for certain what month it is, although everyone believes there are "experts" around. In practice, different opinions always exist, and the calendar is effectively adjusted "on the fly" according to various seasonal markers—though no one is aware that these adjustments are being made. The calendar is completely self-consistent in its own terms, and there is no need for intercalary months. The nearby Borana have a completely different and utterly distinctive luni-stellar calendar that reckons the time of the month and year by observing the moon in relation to the stars, completely ignoring the sun (see borana calendar). The Works part of hesiod's Works and Days describes farmers' rules of thumb in eighth-century b.c.e. Greece that related exclusively to seasonal astronomical phenomena such as the heliacal rising of stars; the lunar phases are only mentioned in the separate Days part. The Roman civic calendar, upon which the modern (Western) calendar is based, only emerged from chaos when it ignored the moon completely (see roman astronomy and astrology). On the other hand, uncorrected lunar calendars remain of considerable importance to this day, one of the most obvious examples being the Islamic calendar (see islamic astronomy). Finally, the ancient Mesoamerican calendar, arguably the most sophisticated and complex of all the world's calendars, operated by combining cycles as diverse as the 365-day year, a 260-day cycle (whose astronomical derivation, if it is astronomically derived at all, remains unclear), and the 584-day synodic cycle of the planet Venus (see mesoamerican calendar round).

In short, there is no inevitable path in the development of calendars. Instead, they advance in diverse ways according to local conditions and needs. This means, for one thing, that they cannot be used as yardsticks of cultural achievement. It also means that they cannot be considered as abstractions, divorced from the social context in which they developed and the social needs that they fulfilled. The Hopi calendar, for example, had (as we would see it) both a pragmatic and a sacred function, but from the Hopi perspective it functioned holistically to ensure the well-being of the community in all respects. Different calendars can have different purposes and even run alongside one another, as—it appears—did the religious and administrative calendars in ancient Egypt (see ancient Egyptian calendars). To the historian or archaeologist, understanding the technical aspects of an ancient calendar is often of limited interest. It is much more intriguing (and of ten much more challenging) to understand how a calendar operated in its social context, what it meant to people, and what its social implications were.

Modern folk calendars and associated traditions that still exist in many parts of the world, particularly in rural communities, often preserve an inherently holistic worldview, integrating earth and sky in a mixture of what the modern scientist would be inclined to view as rationality and superstition. In the Baltic States of Latvia and Lithuania, for instance, a mixture of prognostications survives that relate people's character, health, and happiness to the phase of the moon at the time of their birth and at important moments in their lives. This Baltic tradition leads to a related issue: the role of ASTROLOGY. The history of astronomy is clearly intimately bound up with the history of astrology; the distinction between the two is only an issue in the context of the modern scientific way of understanding the world. Taking an anthropological viewpoint, we must realize that systems of thought including beliefs that we might describe as "astrological" may themselves constitute ways of understanding the world that are perfectly coherent and logical in their own terms. Thus by considering the biblical skies from the point of view of the astrologers of the time, rather than simply as modern astronomers, a very plausible solution has recently been suggested to the riddle of the identity of the STAR OF BETHLEHEM, which has perplexed astronomers for years.

Ancient peoples generally did not share the modern conception of time as an abstract entity, as a line along which we move through our lives (see space and time, ancient perceptions of). The earliest calendars almost certainly did not come into being as a result of simply conceived astronomical observations undertaken in order to mark the passage of abstract time. They emerged in the context of complex views of the universe in which many aspects of natural and human activity were seen as tied together in fundamental ways. This concept is of vital importance when we try to interpret archaeological monuments that appear to have incorporated alignments marking sunrise or sunset on particular calendrical dates. A fundamental question is: Which regular astronomical events might have been significant to people in the past? Alongside the solstices, the equinoxes are widely assumed to have had inherent significance, yet many investigators have been surprised to discover the absence of equinoctial markers in the culture they are studying. From the point of view of the observers themselves, however, there is a clear difference between the two. The solstices are tangible: at these times, the sun reaches the physical extremes of its motions along the horizon. The SOLSTITIAL DIRECTIONS mark the boundary between those parts of the horizon where the sun can rise or set, only passes over, or is never seen. These define a natural division of the world, as seen from any central point of observation, into four parts. The equinoxes, on the other hand, would in practice only have been observable as halfway points between the solstices. They would generally have been no more likely than any other date in the year to be correlated with any of the other seasonal events that would actually have meant something to people. The midpoint, whether in time or space, seems significant only if one views time and space in the abstract. This is not to deny that particular groups of people in the past may have chosen to divide the year into four roughly equal divisions, but we can not simply assume that the equinox was a significant calendrical date for all.

0 0

Post a comment