Mursi Calendar

The Mursi live in the northern part of the basin of the river Omo in southwest Ethiopia. They depend for their subsistence upon both cattle and cultivation, mainly of sorghum but including some maize and cowpeas. Their subsistence activities span two ecological zones: the Omo and its flanking belt of bushland thicket, which is suitable for cultivation following annual floods, and the higher, wooded grassland, where the cattle can be herded safe from infestations of tsetse fly. The two most significant seasonal events in Mursi country are the onset of the "big rains" in March or April, when the entire Mursi population comes together at the border of the two zones and rain cultivation is possible, and the flooding of the Omo six months later, when some of the population, mainly women and girls, move to the Omo and plant a flood cultivation along its banks, while the remainder, mainly men and boys, move in the opposite direction to cattle camps where they remain during the driest part of the year.

If one were trying to piece together an account of Mursi calendrical practice from informants' accounts, the first step in the process would be easy. The Mursi have a seasonal calendar based upon the phase cycles of the moon, and every member of the group, including children, can recount the seasonal events associated with each month. Thus, for example, one would learn immediately that in month eight the "big rains" fall. One would begin to encounter difficulties, however, in trying to match up the Mursi months with the seasonal year. There are between twelve and thirteen synodic (lunar-phase-cycle) months in the seasonal year, as we know. This means that in order to keep a lunar calendar in step with the seasons, some years must contain twelve months while others have thirteen. And yet, each Mursi year contains twelve numbered months together with a thirteenth, which has a name: gamwe. Mursi informants insist that no month is ever missed.

Only by living with the Mursi for a period of time could one discover the solution to this problem. It would then become clear that, in practice, no Mursi is ever quite sure what the current month is. This is despite the fact that everyone is confident that there are experts who are. In actuality, the regulation of the calendar is a matter of public consensus. When certain seasonal events occur, their effect is to sway the balance of opinion. Even major seasonal events such as the coming of the big rains do not serve to fix the calendar, as might be expected from the rule of thumb that everyone recounts: this is because everyone acknowledges that seasonal events can sometimes occur early or late. To an outsider, the Mursi calendar seems haphazard and imprecise; yet for the Mursi it is self-consistent and works perfectly well.

Among the Mursi are people who have a particular interest in watching the sun rising behind the mountains on the eastern horizon. They recognize the sun's two "houses" in which it rises for a period of time at the extremes of its sojourn along the horizon, around the time of the solstices. A visitor might be told, for example, that the sun enters its southern house in the first half of month five and leaves it again in the first half of month six. A future archaeologist, on discovering evidence of the existence of such observations, might well conclude that the Mursi had developed a horizon-based solar calendar. However, as we know, the sun cannot, for example, always enter its house in the first half of a month, since the lunar phases fall differently in each solar year. When pressed on the issue, the Mursi specialists admit that the sun can sometimes be early or late in its movements along the horizon. The behavior of the sun, in other words, is viewed as no more reliable a seasonal indicator than that of animals, plants, and the weather. The lunar calendar remains intact.

Despite the haphazard nature (to an outsider) of the Mursi calendar, it works well enough for nearly all of the year. There is, however, one event that must be timed critically. This is the time of migration to the banks of the Omo. The river floods its banks several times, and the crop of cowpeas must be planted within a few days of the final flood; otherwise, if planted too late, the seeds will be too dry to germinate or, if planted too early, they will be washed away by the subsequent flood. How do people know the right time to move away from their bushland clearings down to the river? The answer is: by observing the successive disappearance of four stars in the evening twilight. The stars in question are the middle two stars of the Southern Cross (8 and < Crucis) and the Pointers (< and a Centauri), which are more or less in a straight line falling vertically to the horizon at the latitude (close to the equator) where the Mursi live.

The successive disappearance (heliacal setting) of the four stars coincides with the time of year of the Omo floods, which are very regular. When imai (8 Crucis) ceases to appear in the evening sky at dusk (around the end of August), it is said that the Omo rises high enough to flatten the imai grass that grows along its banks, and then subsides. This is followed a week or two later by the disappearance of thaadoi (< Crucis) when the Omo rises and falls but does not yet reach its full height. By the time that waar (< Centauri) disappears, the Omo (for which the Mursi name is waar) has risen to its full height and has flooded the levee forest along its banks. Finally, as sholbi (a Centauri) disappears from view (around the beginning of Octo ber), the flood waters finally recede, carrying away the fallen petals of the sholbi (acacia) tree. Planting can now proceed down to the water's edge.

To us it might seem that the successive disappearance of these four stars simply provides a practical rule of thumb that helps to determine when the move to the river bank should take place. But the use of common terms for stars and terrestrial objects indicates deeper associations in the minds of the Mursi, direct connections that tell us something of their worldview. For them, the behavior of the Omo is understood in relation to other factors in the natural world, both terrestrial and celestial. It is this knowledge of the world that is being applied in order to determine when to move down to the banks of the Omo and begin planting.

The Mursi example serves to undermine virtually every generalization we might try to make about calendrical development. If people have a basic lunar calendar, so the argument goes, in which they count off months according to the changing phases of the moon, then they must inevitably notice that it soon gets out of step with the seasons. Whether their annual cycle consists of twelve or thirteen months, they will find themselves adding or subtracting intercalary months to keep the lunar calendar in phase with the seasons, at first on an ad hoc basis, and then, if they progress beyond this point, more systematically. The Mursi example shows how a basic lunar calendar, without intercalation, can work perfectly well through the mechanism of institutionalized disagreement. Another common assumption is that if people observe the changing position of sunrise or sunset on the horizon, then they have reached a stage of development at which they recognize that it is the sun, rather than the moon, that is actually tied to the seasons, and they are likely to shift to a horizon-based solar calendar. Again, the Mursi example repudiates this notion completely.

Finally, the direct observation of the four stars to determine the correct time of arrival at the river might also be seen as a developmental step. It would be easy to conclude that, while the Mursi are haphazard the rest of the time, in this instance, when it really matters, they are capable of being precise. This would be a misleading conclusion. As far as the Mursi are concerned, there is a direct connection between the successive disappearance of each star in the evening twilight and the corresponding terrestrial events. To say that the Mursi are precise when they need to be is missing the point. It is more correct to say that their understanding of how the world works is completely different from ours, and yet it is both self-consistent and has a predictive capability. It is the application of this knowledge that successfully prevents the loss of the crop that provides their main food source for half of the year.

In short, as the Mursi example shows, it is misguided to attempt to measure the sophistication of an indigenous calendar against any sort of de velopmental yardstick. Instead, we need to try to understand such calendars in the context of a framework of indigenous knowledge. By doing so, we better appreciate that knowledge for what it is, and for what it can add to our appreciation of the richness and diversity of indigenous knowledge in general. On the last point, a comparison of the Mursi with the nearby Borana, who have a much more precise but highly unusual luni-stellar calendar, demonstrates very clearly how two communities in similar circumstances, with similar skies, can nonetheless think and act in completely different ways.

See also:

Lunar and Luni-Solar Calendars.

Borana Calendar.

Heliacal Rise; Solstices.

References and further reading

Aveni, Anthony. Ancient Astronomers, 93-95. Washington, DC: Smithsonian Books, 1993.

Chamberlain, Von Del, John Carlson, and Jane Young, eds. Songs from the Sky: Indigenous Astronomical and Cosmological Traditions of the World, 298-309. Bognor Regis, UK: Ocarina Books, and College Park, MD: Center for Archaeoastronomy, 2005.

Turton, David, and Clive Ruggles. "Agreeing to Disagree: The Measurement of Duration in a Southwestern Ethiopian Community." Current Anthropology 19 (1978), 585-600.

0 0

Post a comment